

Mid-term Event - 22/10/2020

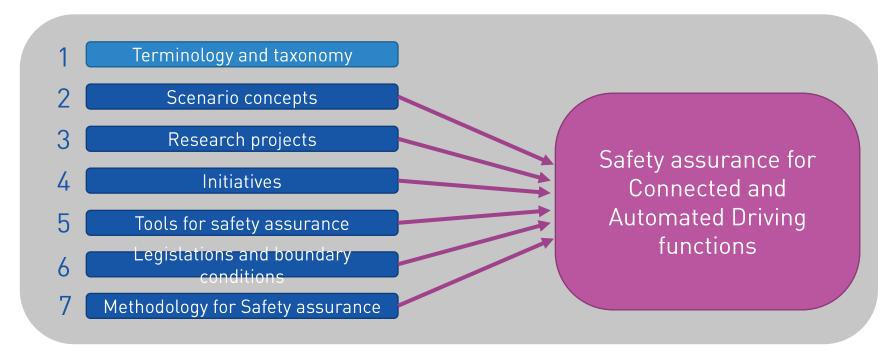
Scenario based validation for CAD: Initiatives, projects and state of the art

Jean-Baptiste Coget, VEDECOM

Use cases and requirements (Work Package 1) Invary to September 2019

Objectives:

- 1) Develop a comprehensive technical analysis and gap analysis on testing and validation methodologies based on ongoing initiatives worldwide.
- 2) Identify the needs of stakeholders and target groups and prioritise the use cases arising.
- 3) Identify the functional and technical requirements for Key Enabling Technologies (Cyber-security, Positioning, Connectivity).
- 4) Select the most relevant use cases in various traffic scenarios and detail their functional requirements.



I- State of innovation and gap analysis

✓ Topic led by IKA:

- ✓ Objective: Provide a detailed analysis of the existing state of the art on validation and testing methodology for CAD and identify the main gaps based on the available results.
- √ 7 aspects of the state of innovation.

1- Terminology and

taxonomy Terminology:

- ✓ Project analysis: list the terms linked to CAD from 28 projects and standards (DIN-SAE Spec 91381; ISO/PAS 21448 ...)
- ✓ Selection of the most representative terms.
 - Some terms have multiple meanings
 - The same concept is expressed with different terms
- ✓ Criteria for selecting terms and definition :
 - Relevance to the scope of HEADSTART
 - Generality and representativeness
 - Clarity and conciseness
- ✓ A unified and unambiguous glossary has been defined with ~45 terms

Taxonomy for automation levels:

- ✓ Most projects follow the SAE J3016 taxonomy
- ✓ Other model found : BASt and NHTSA

Level	SAE - J3016	BASt	NHTSA
0	No Automation	Driver Only	No Automation
1	Driver Assistance	Assisted	Function Specific Automation
2	Partial Automation	Partly Automated	Combined Function Automation
3	Conditional Automation	Highly Automated	Limited Self- Driving Automation
4	High Automation	Fully Automated	Full Self-Driving Automation
5	Full Automation	/	/

2- Scenario concepts

- ✓ Objective : Definition of driving scenarios
- ✓ Scenario concepts detailed form several research projects:

3- Research projects

- ✓ Objective : Identify CAD research projects of interest for HEADSTART
- √ 38 projects identified
- ✓ Focus on HEADSTART's Key Enabling Technologies
 - V2X communication → 9 projects
 - Cyber security → 7 projects
 - Positioning → 8 projects
- ✓ Focus on CAD-Test-definition & Testing-activities → 22 projects

3- Research

Other projects:

- ✓ HoliSec
- ✓ Cooperative driving at traffic intersections
- ✓ MuCCA
- ✓ Grand Cooperative Driving Challenge
- ✓ PROSPECT
- ✓ Coordination of CAVs over 5G
- ✓ ESCAPE
- ✓ ADAS & me

- ✓ Objective admits similar of interest for HEADSTART ✓ 22 relevant initiatives found
- ✓ Classification into several topics:

Manufacturers

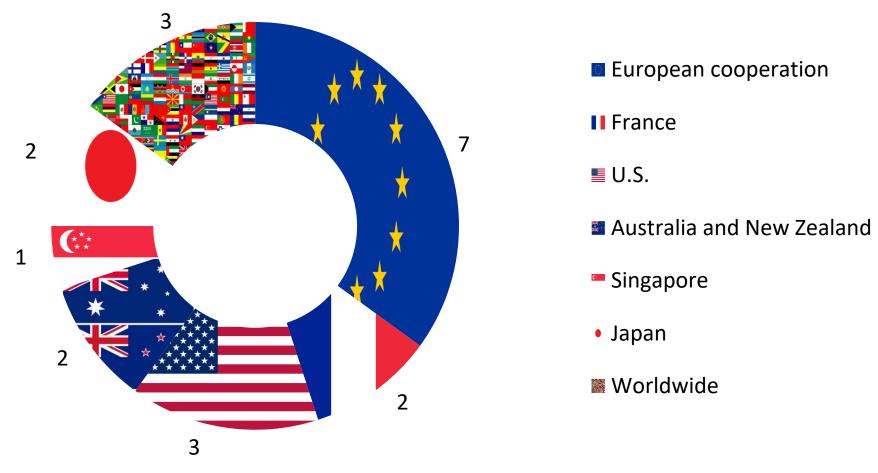
Public

KETs

Consumer

Other relevant initiatives

EATA European Automotive and Telecom Alliance



4- Initiatives

Localisation of the Initiatives

5- Tools for safety assurance

- ✓ Objective: List the main tools relevant for HEADSTART
- ✓ Four categories of tools of interest for HEADSTART:

Annotation tools Addition of relevant metadata

- Video Annotation tools
- Annotation tools for 3D content
- Web platforms offering data annotation services
- Annotation tools from initiatives
- ...

Recording tools Synchronous raw data acquisition

- RTMaps
- Polysync Core
- IDIADA IDAPT
- LogicBricks logiRECORDER 3.0
- ..

Simulation tools

- NVIDIA DRIVE
- Microsoft AirSim
- Simcenter Prescan
- CARLA
- IPG Carmaker
- rFpro
- VIRES VTD
- ...

Dummies

- Global Vehicle Target (GVT)
- Pedestrian Target (PT)
- Bicyclist Target (BT)
- · ...

Software to control dummies

- Robot Operating System (ROS)
- Automotive Data and Time-Triggered

Framework (ADTF)

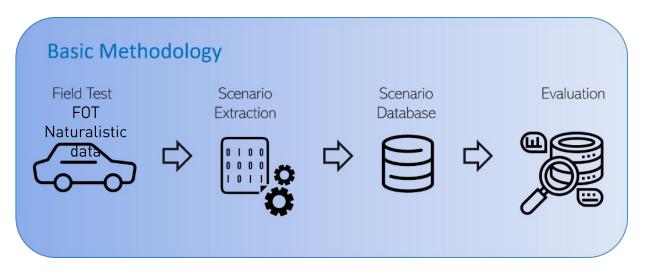
•

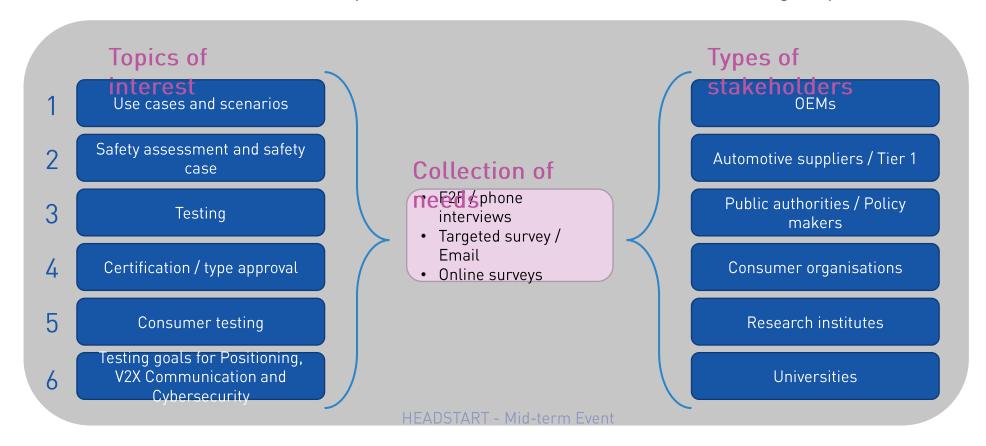
6- Legislations and boundary conditions

- ✓ Objective: Assess the current legislation on type approval for CAD functions, identify the relevant legislations for HEADSTART.
- ✓ 56 document reviewed from European and non-European Legislation, National Legislation, Standards and Guidelines

7- Methodology for Safety assurance

✓ Objective: Define the methodologies for safety assurance of automated driving functions





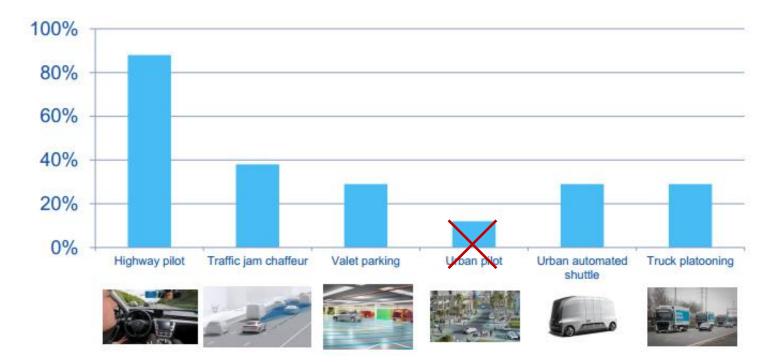
24/11/2020

II- Identification of stakeholder needs

- ✓ Topic led by VEDECOM: VEDECOM
- ✓ Objective: Identify the needs on methodologies and procedures (demonstrations, certifications), tools and standards from the viewpoint of different stakeholders and user groups.

II- Identification of stakeholder needs

✓ Quantitative results for the 6 interview topics:


Type of stakeholder	F2F / phone interviews	Targeted survey / Email	Total
0EMs	5	3	8
Automotive suppliers / Tier 1	1	2	3
Public authorities / Policy makers	3	1	4
Consumer organisations	0	1	1
Research institutes	11	16	27
Universities	0	1	1
Total	20	24	44

√+14 online surveys answered

1- Use cases and scenarios

- ✓ Objective: Identify the priority use cases for stakeholders
- ✓ Survey results for use cases:
 - User groups needs on use cases have been presented at an expert workshop in Eindhoven in June 2019
 - The open discussions with the stakeholders confirmed that « urban pilot » is not a priority for them.

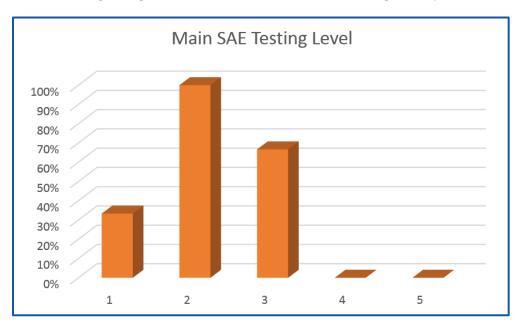
2-Safety assessment and safety case

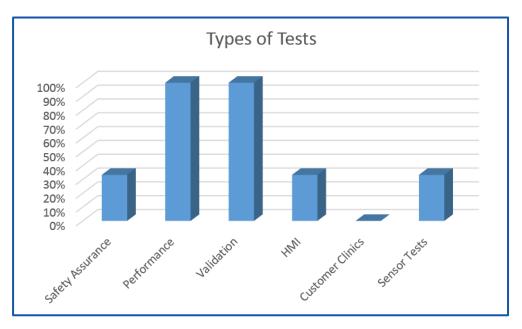
✓ Objective: Identify the main risks introduced by CAD functions and the means to improve safety

✓ Main risks introduced by CAD functions:

- Misusing the system (ex: no respect of the ODD)
- Encountering an unknown scenario
- Software update and bugs

- Criminal activities / cyberattack
- Loss of positioning / Connectivity
- .


✓ Best approach to take to ensure safety:


- Scenario-based approach
- Validation → Combination of different test instances (e.g. simulation, test track, open road)
- Procedure and tools → Safety Of The Intended Functionality (ISO/PAS 21448) + ISO 26262
- No current legislation for the safety of CAD functions of level 3+

3- Testing

- ✓ Objective: Identify the needs on testing CAD functions
 - Most of the testing is taking place on SAE levels 2 and 3 but will soon evolve to SAE level 3+
 - Testing organisations are focusing on performance and validation tests.

- No fixed methodologies stated except from protocols like EuroNCAP
- Need for a common methodology and protocol

4- Certification & type approval

- ✓ Objective: Identifying the type approval needs for testing
- ✓ e.g. International Organization of Motor Vehicle Manufacturers (OICA) 3 pillars concept for

Audit/Assessment

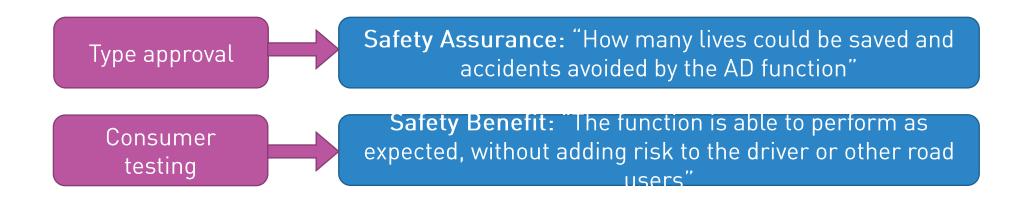
Simulation

- Understand the system to be certified
- Assess that the applied processes and design/test methods for the overall system development (HW and SW) are effective, complete and consistent
- Assess system's strategies/test performance to address (multiple) faultconditions and disturbances due to deteriorating external influences; vehicle behavior in variations of critical scenarios
- Simulation: Test parameter variations (e.g. distances, speeds) of scenarios and edgecases that are difficult to test entirely on a test track

Physical Certification Tests

- Assess critical scenarios that are technically difficult for the system to cope with, have a high injury severity (in case the system would not cope with such a scenario) and are representative for real traffic
- Compare with critical test cases derived from simulation and validate simulation tools

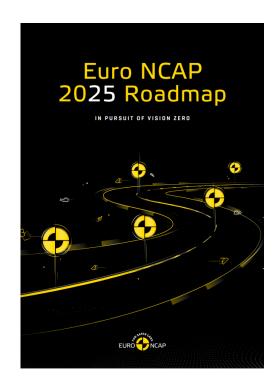
Real World Test Drive


- Assess the overall system capabilities and behavior in non-simulated traffic on public roads and show that the system has not been optimized on specific test scenarios
- Assess system safety requirements like e.g. HMI and ODD
- Assess that the system achieves a performance comparable to an experienced driver

5- Needs on consumer testing

- ✓ Consumer testing → one final user of the HEADSTART methodology.
- ✓ Strictly focus on functions that are already available on the market (SAE level 2)
- ✓ Goal for consumer associations → Correctly communicate the capabilities and limitations of the functions to the final customer.

5- Needs on consumer testing


Euro NCAP 2025 https://cdn.euroncap.com/media/30700/euroncap-roadmap-2025-v4.pdf

New features to be tested in Euro NCAP:

- Driver Monitoring (2020)
- Automatic Emergency Steering (2020, 2022)
- Autonomous Emergency Braking (2020, 2022)
- V2x (2024) 10SECONDARY SAFETY
- Whiplash/Rear-end Crash Protection (2020)
- Pedestrian and Cyclist Safety (2022)
- Tertiary Safety
- Rescue, Extrication and Safety (2020)
- Child Presence Detection (2022)

Other Features:

- Automated Driving
- Cyber Security
- Trucks and Powered twowheelers

6- Needs on testing Key Enabling Technologies

- 1. Identification of the best use cases to test Key Enabling Technologies
- 2. Identification of specific testing needs for KETs
- ✓ Main use cases for testing KETs identified :

Highway Pilot (Level 4)

Urban and Suburban Pilot (Level 4)

Highly automated freight vehicles in Fully Automated Urban Vehicles (Level 5)

Automated PRT/Shuttles on dedicated roads (Level 4)

Automated Bus Chauffeur (Level 3)

Autonomous private vehicles on public roads (Level 5)

Automated Truck Platooning (Level 2)

Highly automated freight vehicles in Hub-to-Hub operation (Level 4)

Urban and Suburban Pilot (Level 4)

Traffic Jam Chauffeur (Level 3)

Thank you!

Any questions?

Jean-Baptiste COGET
VEDECOM

